Imaging Methods: CT Handout

Kinga Karlinger, MD, PhD

Senior Scientific Worker

Semmelweis University, Budapest

Digital picture of CT

mosaic picture, calculated
voxel: a volumen element: prism
pixel is the basis of the prism: 0,5 x 0,5mm
slice tickness is the height of the prism: 0,6 - 5,0 - ..mm

Fundamental concepts

▶ gantry (x-ray tube, detectors)

≻table-moving

•sequential scanning - one-slice "slices and steps" CT

•continuous scanning - spiral CT and newer generation multidetector/ multislice CT

CT equipment

▶gantry and the table

➤a generator of high voltage

≻computer

≻the driving counter

>workstations for postprocessing (measurements, reconstructions)

Sequential or conventional CT: stepping and shooting one after of each other

Spiral CT: pushing forward the table continuously while screening continuously

- **One detector row CT** (SDRCT): fan beam, the slab of detectors in one slab (bow -like)
- **Multi detector row CT** (MDRCT): wide fan or cone beam, the detector slab is in two dimension

CT geometry of 3rd generation

X-ray source and the detector are rotating perpetually around the object investigated.

The detector can be:

- One row or line: fan-beam / straight / bended (Single slice CT)
- Multi row:
 - Flat-panel CT
 - Bended (banana)

CT TYPES

- x-ray, digital tomography
- demonstrates of differences in the x-ray attenuation, in one shift
- l out of date
 - \sim one slice :- 2 4 sec
 - » whole scanning: 5 15 min
- | Spiral CT
 - \sim one slice -1 1.5 sec
 - » whole scanning: 30 60 sec (+ preparation)
- Multidetector / multislice spiral CT (4-64 etc rows of detectors)

 \Rightarrow one slice – 0.4 - 1 sec

» whole scanning: 5 - 15 sec

\rightarrow HRCT (high resolution CT)

➤ data collection is longer

 \triangleright x-ray load is higher

≻thin slices

➢ high resolution, detailed picture

→Multidetector / multislice CT

≻parallel rows of detectors

>during one rotation 4, 16, 32 attached slices

>continuous data collection – no information - lost

>quickly a huge amount of data, volumetric data collection

≻x-ray load is more favorable

>only during one inspiration a whole body scan is possible

≻reconstructions in any preferable plane

➤3D visualization

→Dual Source CT

>2 x-ray tubes, 2 detectors in the same time

>the 2 tubes are at right angles to each-other, data collection is synchronic

>two working types:

>dual source : both tubes work on the same kV = half time

≻rotation is 90

>dual energy: tube one: 80 KV, tube two 140 kV, rotation is 180

>tissue attenuation is different according to the energy of the x-ray,

>the two data collection differ from each other = tissue differentiation

Advantages of Dual Source imaging

>better quality of pictures

≻lowers x-ray load

≻tissue differentiation

>vessels and bones can be directly subtracted

>oncological staging of tumors

≻vessel plaque characterisation

>fluid differentiation in emergency diagnostics

Cardiological imaging with dual source CT

>The optimal phase is the diastolic

>At high frequecies this phase shortens

≻With dual source CT each of the two detectors have to turn only 90° degree

► Rotation time 0,33 sec

>Time resolution 0,83 msec - irrespective of cardiac frequency

\rightarrow PET-CT

>combined (hybrid) diagnostic method, computer tomography (CT) and pozitron emission tomography (PET)

>radioactive izotope (^{18}F) + glucose molecule = (FDG)

≻small amount, short half-life time

>PET shows the metabolic processes in the cells

>malignant tumors: early detection, staging, follow up - therapeutic effect

Computerized reconstruction of pictures

Density and absorption: Hounsfield-scale
The fixed point of the scale:
water = 0 HU
air = -1000 HU,
bones = 3000 HU
Human eye can differenciate 24-30 shades on the gray scale.
Windowing:

Window center = put at the same attenuation of the tissue, which is to be demonstrated
Window width =

•narrow – small range of attenuation differences "hard"

•wide – broad range of attenuation differences "smooth"

\rightarrow How to use the windowing depends on:

which part of body

what is targeted

other influencing circumstances (corpulent patient)

other contrast enhancing factors influencing densities (c.m. i.v. or p.o.)

Ca

Important HU values:

-1000 HU	vacuum
-100 HU	fat
0 HU	water
20 HU	dens fluid
$20-80\ HU$	soft tissues
$70 - 100 \; HU$	fresh bleeding
100 - 1000 HU	contrast mat., C

Procedure of CT scanning:

1st scan topogram / scout view

2nd sequence tomogram / slices

Imaging:

Reconstruction:

a) filtered backprojection

several variations:

- parallel-beam
- fan-beam (eg.ASSR)
- cone-beam (eg.AMPR)
- b) Iterative approach

Imaging

2 dimensions:

a) Transaxial slice-pictures

b) Orthogonal pictures (transaxial, coronal, frontal)

- c) Multiplanar reformation images (MPR)
- d) Curved planar reformation images (CPR)
- e) Slab pictures (sum, MIP, mIP)

3 dimensions :

- a) Surface rendering
- b) Volume rendering
- Maximum intensity projection
- Minimum intensity projection
- Volume rendering
 - transparency: opacity and gradient map
 - color: pixel value (color-map)

Contrast materials

I.v. iodinisedContrast materials into the G.I. tract.

Dynamic CT investigations

➢iodinised c.m iv.

➢ seriogram on the same place /slice

> detection of contrast enhancement during the time

Advantages of spiral CT :

>volumetric data collection: small masses, lumps.

>shorter scanning time = shorter investigating time

>more precious measuring of densities

>decreases some artefacts

≻economizes the amount of c.m.

≻lowers x-ray loading

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.