Parzeval-tétel
Az alábbiakban azt mutatjuk meg, hogy maga az függvény, illetve annak energia tartalma miként határozható meg a komplex spektrum reális illetve imaginárius részek ismeretében.
A komplex spektrum a Fourier transzformációval nyerhető:
ahol
Ezen jelölések bevezetésével eképp írható fel:
Következésképpen az az és paraméterekkel az alábbiak szerint fejezhető ki:
és
Az -re vonatkozóan alkalmazzuk az Euler relációt:
. Ezen összefüggésekből leolvasható, hogy azaz páros, míg páratlan függvények.
és az inverz Fourier transzfomáció formulája alapján f(t) eképp írható fel:
Mivel is és páros illetve és páratlan, ezért szorzatuk eredménye mindkét esetre vonatkozóan páros lesz. Ennek következménye, hogy az impropirus integrál ezen része páros függvényen történik. Teljesen analóg módon belátható, hogy az impropirus integrál másik tagja páratlan függvényen történik, és így ezen rész impropirus integrélja 0.
Így kifejezhető az és ismeretében.
Az függvény energiatartalma:
hiszen és
(Vissza a 'Fourier-transzformáció' című fejezethez)